The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 2X+2 1 1 1 1 2 1 1 1 1 X 1 1 1 2 0 1 X X X 2X+2 1 1 X X 1 1 0 X 0 X 0 2X 3X+2 X 2X+2 3X+2 2X+2 X+2 2X+2 2 3X X+2 3X 2X+2 2 3X+2 0 X X 2X+2 2X+2 X 3X 2 2 X 3X 2 0 3X+2 3X+2 3X+2 3X+2 3X 0 2X 2X 3X+2 2X 2X+2 X X+2 0 0 X+2 2X 2X+2 0 0 X X 2 X+2 3X+2 2X+2 2 2X 0 2 X 3X+2 3X+2 X 3X X 0 2 3X 0 2X 3X+2 X X 3X+2 2X 2 3X+2 2X 3X+2 2 X 2X 0 X+2 3X+2 X X 2X+2 3X+2 X+2 3X+2 3X 2X+2 0 3X 3X 0 2 0 0 0 2X 0 0 0 2X 2X 2X 2X 0 2X 2X 0 2X 0 2X 0 0 2X 2X 2X 0 0 2X 2X 0 2X 0 2X 0 2X 0 0 0 2X 0 2X 0 0 2X 2X 2X 2X 2X 0 2X 2X 2X 0 0 0 0 0 2X 2X 0 0 0 2X 2X 2X 0 2X 2X 2X 0 2X 0 0 0 0 0 0 0 2X 0 2X 2X 0 2X 2X 0 2X 2X 2X 2X 0 2X 2X 0 0 2X 2X 2X 0 2X 0 0 0 0 generates a code of length 51 over Z4[X]/(X^2+2X+2) who´s minimum homogenous weight is 46. Homogenous weight enumerator: w(x)=1x^0+115x^46+212x^47+428x^48+464x^49+541x^50+772x^51+475x^52+404x^53+325x^54+124x^55+103x^56+56x^57+39x^58+12x^59+17x^60+4x^61+3x^62+1x^78 The gray image is a code over GF(2) with n=408, k=12 and d=184. This code was found by Heurico 1.16 in 0.313 seconds.